

Richard Morgan

Cambridge IGCSE®

Computer
Science

Programming Book

for Microsoft® Visual Basic

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

Information on this title: education.cambridge.org

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Latimer Trend

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-51864-3 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate. Information regarding prices, travel timetables, and other
factual information given in this work is correct at the time of first printing but
Cambridge University Press does not guarantee the accuracy of such information
thereafter.

IGCSE® is the registered trademark of Cambridge International Examinations.

NOTICE TO TEACHERS IN THE UK
It is illegal to reproduce any part of this work in material form (including
photocopying and electronic storage) except under the following circumstances:
(i) where you are abiding by a licence granted to your school or institution by the

Copyright Licensing Agency;
(ii) where no such licence exists, or where you wish to exceed the terms of a licence,

and you have gained the written permission of Cambridge University Press;
(iii) where you are allowed to reproduce without permission under the provisions

of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for
example, the reproduction of short passages within certain types of educational
anthology and reproduction for the purposes of setting examination questions.

All examination-style questions, sample mark schemes, solutions and/or comments
that appear in this book were written by the author. In examination, the way marks
would be awarded to answers like these may be different.

Contents
Introduction iv

 1 Visual Studio Express 1

 2 Sequence 13

 3 Variables and Arithmetic Operators 19

 4 Selection 31

 5 Iteration 51

 6 Designing Algorithms 67

 7 Subroutines 77

 8 Checking Inputs 85

 9 Testing 93

 10 Arrays 103

 11 Directional Instructions 113

 12 Examination Practice 117

 13 Solutions 122

 iii

Introduction
When I wrote this book I had two aims in mind. The first was to provide a programming book
that specifically covered the material relevant to the Cambridge IGCSE® syllabus. The second,
and perhaps more important, aim was to provide the student with a start to the exciting and
rewarding process of being able to create their own computer programs.

Language
The syntax and structures used to implement programming techniques will vary across
different languages. The book is entirely based around Visual Basic, one of the three
recommended languages for the A Level syllabus. Visual Basic offers the student, as
a programmer, two modes of application. There is a simple console window in which
the student can learn and develop programming skills. It also offers a Windows Forms
application, which allows the student to program commercial-style applications that offer a
graphical user interface through which users can interact with programs.

The language is supported by a fully functional development environment called Visual
Studio Express, which is available free directly from Microsoft. They also provide excellent
support and language-specific tutorials via the Microsoft Developer Network. All the code
and language specific comments in this book relate to Visual Studio Express 2013.

Examination focussed
The course will test computational thinking independent of any specific programming language.
It will do this through the use of program design tools such as structure diagrams and flowcharts.
It will also make use of pseudocode, a structured method for describing the logic of computer
programs.

It is crucial that the student becomes familiar with these techniques. Throughout this book all the
programming techniques are demonstrated in the non-language-specific format required. This
will help prepare the student to answer the types of question they will meet in their studies.

To support learning, many of the chapters include examination-style tasks. Chapter 13 has
examples of appropriate code solutions showing how to turn logical ideas into actual programs.
There is also a series of examination-style questions in Chapter 12, which has a sample mark
scheme giving possible solutions and showing where the marks might be awarded.

Developing programming skills
One of the advantages of Visual Basic is that it provides a language that encourages the
student to program solutions making use of the basic programming constructs: sequence,
selection and iteration. Although the language does have access to many powerful pre-
written code libraries, they are not generally used in this book.

Computational thinking is the ability to resolve a problem into its constituent parts and to
provide a logical and efficient coded solution. Experience tells me that knowing how to think
computationally relies much more on an understanding of the underlying programming
concepts than on the ability to learn a few shortcut library routines.

This book is aimed at teaching those underlying skills which can be applied to the languages
of the future. It is without doubt that programming languages will develop over the coming
years but the ability to think computationally will remain a constant.

iv

Cambridge IGCSE Programming Book

v

How to use this book: a guided tour
Extension Task – extension of an existing exercise for
the student to further develop their knowledge and
understanding.

Syllabus Check – links programming concepts
explained in the text to the Cambridge IGCSE syllabus.

Chapter – each chapter begins
with a short list of the facts and
concepts that are explained in it.

Task – exercises for
the student to test
their knowledge and
understanding.

Summary Checklist – at the end of each chapter
to review what the student has learned.

Tip – quick suggestions to remind
the student about key facts and
highlight important points.

Key Term – clear and
straightforward explanations of
the most important terms in each
chapter.

Acknowledgements
The authors and publishers acknowledge the following sources of copyright material and are
grateful for the permissions granted.

Cover Soulart/Shutterstock; p. 1 isak55/Shutterstock; p. 13 aimy27feb/Shutterstock; p. 19
Image Source/Getty Images; p. 31 Magictorch/Ikon Images/Getty Images; p. 51 alexaldo/
iStock/Getty Images; p. 67 Ioana Davies (Drutu)/Shutterstock; p. 77 Devrimb/iStock/Getty
Images; p. 85 Mclek/Shutterstock; p. 93 Kutay Tanir/Photodisc/Getty Images; p. 103 ILeysen/
Shutterstock; p. 113 Kamil Krawczyk/E+/Getty Images; p. 114 John Howard/Science Photo
Library

Screenshots of Microsoft Visual Studio Express 2013 for Windows used with permission from
Microsoft.

Cambridge IGCSE® Computer Science Programming Book is an independent publication
and is not affiliated with, nor has it been authorized, sponsored, or otherwise approved by
Microsoft Corporation.

The publisher has used its best endeavours to ensure that the URLs for external websites
referred to in this product are correct and active at the time of going to press. However, the
publisher has no responsibility for external websites and can make no guarantee that a site
will remain live or that the content is or will remain appropriate.

 vi

Cambridge IGCSE Programming Book

1

Chapter 1:
Visual Studio Express
Learning objectives
By the end of this chapter you will understand:

■ the two programming applications used in this book
■ how to code and save a basic program in Console Application
■ how to obtain input data and provide output in Console Application
■ how to code and save a basic program in Windows Forms Application
■ how to use the main programming windows in Windows Forms Application
■ the format of the event-driven subroutines used in a Windows Forms Application.

1.01 Getting Visual Studio Express 2013 for Windows
Visual Studio Express 2013 is the current version of free developer tools provided by
Microsoft . They include the programming languages Visual Basic, Visual C++ and Visual C#.
The examples in this book have been produced using Visual Studio Express for Windows.

I have used Visual Basic with both GCSE and A Level students for the last five years as it
provides an interface that allows students to develop programming skills while at the same
time producing satisfying systems. Visual Basic also provides programmers with access to a
large class library. Classes are templates that hold prewritten code that support functionality
of objects. As students’ skills increase they are able to use this feature-rich development
environment to produce and publish complex systems. System requirements and download
options can be found at www.visualstudio.com/products/visual-studio-express-vs.

1.02 The Integrated Development Environment (IDE)
The default start page for Visual Studio Express 2013 is shown in Figure 1.01. It consists of
a number of connected windows which off er diff erent functionality based on the type of
project that you open. To begin select New Project.

Figure 1.01 Visual Studio Express start window

The Toolbox
generally off ers a set
of drag-and-drop
tools that allow you
to drag predefined
visual graphical user
interface elements
for the application
you wish to develop.

The Solution
Explorer displays
the contents of a
solution, including
the solution’s
projects and each
project’s items.

2

Cambridge IGCSE Programming Book

The New Project window provides you with a choice of types of application. The two that are
used in this book are Console Applications and Windows Forms Applications. Both make use
of very similar coding approaches to algorithms but differ in the way that a user interfaces
with them.

A Console Application provides a textual interface uncluttered by the need to support a
graphical user interface (GUI). Although IGCSE does not stipulate the use of any programming
language or mode the Console Application is the required format in the A Level syllabus.

A Windows Forms Application provides a graphical user interface that can be customised
to provide users with visual input, output and processing options. The flow of the program
is largely controlled by routines that are triggered in response to the user interacting with
the interface.

To create a new project select the preferred application type (in this case, Console
Application), change the default name to something meaningful and select OK.

1.03 Console Application
The default layout of the console mode consists of the main programming window (see
Figure 1.02) which provides an area in which you write the program code required to accept
inputs, process data and produce the required outputs. The Solution Explorer displays the
contents of a solution, which includes the solution’s projects and each project’s items. This is
where you will find the program you have written, listed as a .vb file.

Figure 1.02 Console application programming window

3

Chapter 1: Visual Studio Express

1.04 Make Your First Program using Console Mode
When the console mode is first loaded the code window will contain four lines of code.

Module Module1

 Sub Main()
 End Sub

End Module

A module is a container of code and can hold a number of subroutines
that perform specific actions. Sub Main() is the entry point for the
program and End Sub indicates the end of the subroutine. Code written
between these points will be executed when the application is run. You can
use the Enter key to add additional lines.

To produce the text ‘Hello World’ you need to code the application to
display the required text.

In Visual Basic the functionality of a class is accessed by use of the dot
symbol. Reading inputs and displaying outputs makes use of the Console
class which provides access to a library of methods that allow the user to
interact with the console.

Figure 1.03 Auto-completion window

Type the word ‘Console’ into the code window (see Figure 1.03).
As you type you will notice that the IDE provides an auto-
completion window listing all the code inputs or objects that
match the letters you have typed. You can double click the
correct item, or press Spacebar when the item is highlighted,
to auto-complete the entry. This will speed up your coding as
once you have typed in the first few characters of the instruction
the soft ware will automatically highlight the closest match.

When Console has been completed type a dot symbol. This will
show a list of all the available methods for the Console class (see
Figure 1.04). The method we need is WriteLine which will display a
textual value in the console window when the code is executed.
The method has to be passed the required text. To provide the
required text the full line will be: Figure 1.04 Methods window
Console.WriteLine(“Hello World”)

Note that the text to be included is in speech marks to indicate that it is text and not a
reference to another object. This code will display the required text in a console window
when the application is run but the window will close as soon as the code has been executed.
To prevent this, the console ReadKey method is used to pause the execution until a key is
pressed on the keyboard. The final code will be:

Module Module1
 Sub Main()
 Console.WriteLine(“Hello World”)
 Console.ReadKey()
 End Sub
End Module

TIP
Type Imports System.Console before the Module Module1 line to
avoid having to type ‘Console’ every time you need to use the class.

4

Cambridge IGCSE Programming Book

To run the code click the Start option on the toolbar or use F5 from the keyboard.
This will launch the console window (Figure 1.05) and display the text ‘Hello World’. The
execution of the code will be halted until a key is pressed at which time the window will close.

Figure 1.05 Console window

Your first console mode program is complete.

Use or the Save All option under the FILE menu to save your project.

1.05 Windows Forms Application
Console mode makes use of a single user interface to accept text-based inputs and display
text-based outputs. Windows Forms provides a visually richer environment which makes use
of a range of graphical user interface tools, to produce systems that have more in common
with commercial applications.

The interface is more complex as programmers are required to design and produce the
graphic user interface that will allow the user to interface with the system. Visual Basic is an
event-driven procedural language in which events trigger subroutines that execute the code
within them. In this first Windows Forms application clicking a button on the form will trigger
an event that delivers the message ‘Hello World’.

5

Chapter 1: Visual Studio Express

The default layout (Figure 1.06) contains five main windows.

Figure 1.06 Windows Forms application programming interface

Main design and programming window provides an area in which you design your system’s
interface and write the program code required to accept inputs, process data and produce the
required outputs.

Solution Explorer displays the contents of a solution, which includes the solution’s projects and
each project’s items. This is where you will find your forms and the program files that support them.

Toolbox provides a set of tools that will allow you to use predefined visual GUI and control objects for
the application you wish to develop.

Properties window is used to view and edit configuration-independent, design-time properties and
events of selected objects.

Error List window displays any errors, warnings or messages produced as you edit and compile code.

Main design and programming window Solution Explorer

Windows Forms application programming interface

Toolbox

Windows Forms application programming interface

Error List window Properties window

TIP
Individual windows can be docked or set as floating. It is possible to open windows via the View menu,
and the Window menu.

6

Cambridge IGCSE Programming Book

1.06 Make Your First Windows Forms Application
In a Windows Forms Application the traditional ‘Hello World’ message will be achieved in two steps:

1 Design and construct the user interface

2 Code the program that will generate the required output.

Design the Interface
Find the button object in the Toolbox. Click to select the tool and move the
mouse over the form in the main design window. The mouse icon will change to show
the icon of the selected tool. Click and drag will generate a button on the form. Using the
standard Windows mouse controls it is possible to resize and move the button.

Use the same process to generate a textbox object on the form.

It is considered good practice to give objects meaningful identifiers. An identifier is the name
of the object. The default identifier structure is the type of object followed by an increasing
number of the objects of that type on the form, such as Button1. The Properties window
provides the interface to change the properties of the each object. As you select an object
on the form, or the actual body of the form itself the Properties window will change to reflect
the properties of the object or form. Objects have many properties that can be configured by
the designer but we are initially interested in the properties in Table 1.01.

Table 1.01

Property What it is

The identifier (name) used in the code to identify the object

The font style used to display text on or in the object

The text that will appear on the object

Use properties to give the button and the textbox meaningful identifiers.

Code the Program
To create or edit the program code that will be activated by the form you have designed you
will need to open the code window.

To open the code window select from the VIEW menu. The
code window will open as an additional tab in the main design window.
Clicking the tabs will switch between design and code windows.

It will contain only two lines of code but they are important as they
indicate the start and end of the code attached to the form (Figure
1.07). All additional code will be placed between these two indicators.
Generally code placed outside will not be part of the form and will
cause an error. The Enter key can be used to make additional lines.

Visual Basic is an event-driven procedural language in which events trigger subroutines
that execute the code within them. In this first program clicking the button on the form
will trigger an event that delivers the message ‘Hello World’. Before writing code the
event subroutine has to be created. Creating an event requires you to select the general

Figure 1.07 Windows Forms application code window

7

Chapter 1: Visual Studio Express

object and then the specific declaration required. For example, the Button object can
have declaration events such as ‘click’ and ‘mouse over’. These diff erent events can be
used to trigger diff erent subroutines.

Figure 1.08 shows both of the drop-down menus but it is not possible for you to view both
lists simultaneously in the IDE. When you select an object (from the list shown on the left),
the list of declarations (shown on the right) shows only the events that are relevant to this
object. Click on the Button1 object to select it. The drop-down menu provides a list of all the
possible button events. Select ‘Click’ to insert the Button Click event.

Figure 1.08 Object and Event Declaration selection

When you select an event the event code will be inserted into your code window.

Private Sub Button1 _ Click(sender As Object, e As EventArgs) Handles Button1.Click

End Sub

Let us examine the code to identify what each element achieves. Although this makes use
of object-oriented language and is outside of the scope of IGCSE, it is useful to have some
understanding of how the process works.

TIP
Double clicking an object in the Design window is a shortcut to opening the code window and creating
the event subroutine. The soft ware will open the code window and automatically create the default
event associated with the object. For example, a Button object’s default event is the Click event.

8

Cambridge IGCSE Programming Book

Table 1.02

Code element Description

Private Sub The start of an individual subroutine. Private means that the subroutine is only accessible by this form.

Button1 _ Click The name of the subroutine. The automatic default is to name the routine after the object and event that will
trigger the subroutine; however it is possible to rename the subroutine.

(sender As Object,
e As EventArgs)

The arguments, or data, that are associated with the event. As this is a button click event the arguments are
limited – either the button was clicked or it was not. However events associated with mouse activation, for
example, will hold data about the location of the mouse on the form and which mouse button was clicked.
You should not change or delete any of this data as your subroutine might not work. As you become a more
advanced programmer, you will learn how you can manipulate these sections.

Handles Button1.
Click

The named events that the subroutine can handle. In this case clicking Button1 will call the subroutine and
execute the code it contains. It is possible to have a single subroutine triggered by multiple events.

End Sub The end of the subroutine. All the code that is to be executed when the subroutine is called is placed
between Sub and End Sub.

In Visual Basic the functionality of a class is accessed by use of the dot symbol. In this
example Button1 is an object derived from the Button class and one of the functions
available is the Click function. The class library’s prewritten code is used when an object of
the Button class is clicked. You have no need to write the code – it is contained within the
class library and is pretested. As you develop your knowledge of Visual Basic you will find that
it makes extensive use of class libraries to provide programmers with functionality.

It is now that we can start to write some code. Within the Button Click subroutine, type in
the name of your textbox. As you type you will notice that Visual Basic provides an auto-
completion window listing all the code inputs or objects that match the letters you have
typed (Figure 1.09). You can double click the correct item, or press Spacebar, to auto-
complete the entry.

Figure 1.09 Auto-complete window

9

Chapter 1: Visual Studio Express

When the name of the textbox has been entered type a dot symbol. As the textbox is an
object of the Textbox class this will show a list of all the available methods which can be
attached to a textbox object. The method we need is the Text method which will either set
text into a textbox or get text from a textbox (Figure 1.10). Double Click, or press Spacebar, to
select this method.

Figure 1.10 List of methods

To indicate the actual text that the method will show in the textbox complete the code as
follows:

TextBox1.Text = “Hello World”

Note that the text to be included is in speech marks to indicate that it is new text and not a
reference to another object. The final code will look like this:

Public Class Form1

 Private Sub Button1 _ Click(sender As Object, e As EventArgs) Handles Button1.Click

 TextBox1.Text = “Hello World”

 End Sub

End Class

To run the code click the Start option on the toolbar or use F5 from the
keyboard. This will launch the form as a separate interactive window. Click on the button and
the text ‘Hello World’ will appear in the textbox.

Your first Windows Forms Application program is complete. You have made use of the design
window and the Toolbox to create the interface. You have generated a subroutine called by
the Click method of a Button object. Within that subroutine you have used the Text method
of a Textbox object to place programmer-defined text into the textbox.

Use or the Save All option under the FILE menu to save your project.

10

Cambridge IGCSE Programming Book

1.07 The Code Behind the Form
As you may have expected the interface objects created by the Toolbox are supported by
code that draws the objects on the form. This is generated for you (Figure 1.11) as you build
the required interface.
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1
 Inherits System.Windows.Forms.Form

 ‘Form overrides dispose to clean up the component list.
 ‘Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 ‘NOTE: The following procedure is required by the Windows Form Designer
 ‘It can be modified using the Windows Form Designer.
 ‘Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 Me.Button1 = New System.Windows.Forms.Button()
 Me.TextBox1 = New System.Windows.Forms.TextBox()
 Me.SuspendLayout()
 ‘
 ‘Button1
 ‘
 Me.Button1.BackColor = System.Drawing.SystemColors.ButtonFace
 Me.Button1.Location = New System.Drawing.Point(37, 43)
 Me.Button1.Name = “Button1”
 Me.Button1.Size = New System.Drawing.Size(79, 42)
 Me.Button1.TabIndex = 0
 Me.Button1.Text = “Button1”
 Me.Button1.UseVisualStyleBackColor = False

Figure 1.11 Example of automatic system generated code supporting the GUI

The file that holds this code is stored in the project folder (Figure 1.12). Until you decide to
publish your applications you will not need to have a detailed understanding of the role of
the project files.

Figure 1.12 Solution Explorer showing project files

11

Chapter 1: Visual Studio Express

1.08 Choosing a Console Application or a Windows
Forms Application
Throughout this book the various tasks are completed using one, or sometimes both, of
these types of application.

Console Applications offer the benefit of more accurately reflecting the programming style
of the IGCSE syllabus and will help prepare you for the expectations of the A level syllabus. In
the course, you will not be expected to produce algorithms in any specific language; you will
use pseudocode and flowcharts to detail answers to questions. Console applications do not
involve the additional complexity of having to reference objects from GUI forms.

Windows Forms Applications will offer a richer visual experience and produce systems similar
to those commercially available.

I suggest that making use of both applications will best support the development of your
computational thinking.

1.09 Additional Support
The intention of this book is to introduce programming concepts making use of the non-
language specific formats included in the syllabus. Visual Basic is used to provide the
opportunity for you to use a real programming language to develop your understanding of
these concepts. Additional support and guidance on the Visual Basic programming language
and Visual Studio Express 2013 can be accessed directly from the Microsoft Virtual Academy.

A range of video tutorials and links to other support can be accessed from
http://www.microsoftvirtualacademy.com/training-courses/vb-fundamentals-for-absolute-beginners

Summary
Visual Studio Express provides two coding windows:

● Console Applications provide a simple interface and are one of the required language formats
used in A Level Computing. The interface is a simple text based console through which user inputs
and outputs are handled.

● Windows Forms Applications offer a richer visual interface for the user of your programs. They
involve the use of a design window and a coding window. They offer more flexibility over the way
in which user inputs and outputs are handled.

12

Cambridge IGCSE Programming Book

Chapter 2:
Sequence
Learning objectives
By the end of this chapter you will:

■ know the diff erence between the three programming constructs sequence, selection and iteration
■ understand the role of flowcharts and pseudocode when designing programs
■ understand the main symbols used in flowcharts
■ understand the preferred format of pseudocode.

13

2.01 Logical Design Considerations
When designing programs it is crucial to consider the order in which the task needs to be
completed. All tasks will follow some logical order. When working on a solution to a problem
you should first apply the top-down design technique, to break down the big problem into
smaller ones.

For example to calculate the time it would take to complete a journey you need to know
the distance to be travelled and the intended speed. The first logical step would therefore
be to calculate the distance to be travelled as without this data the rest of the task could
not be completed.

The sequence in which instructions are programmed can be crucial. Consider the
following algorithm:

Distance = Speed * Time
Speed = 12 kilometres per hour

Time = 15 minutes

A human would recognise that the values for speed and time have been given aft er the
calculation. A coded program would simply complete the task in the order given and
calculate the distance as zero because at the time of the calculation no values had been
provided for speed or time.

A human would probably also recognise the relationship between speed and time,
identifying that the speed is quoted ‘per hour’ but the time is given in minutes and correctly
calculate the distance as 3 kilometres (12 * 15/60). Even if the values had been provided
before the calculation, as no instructions had been given to convert to a common base the
program would calculate distance incorrectly as 180 kilometres by simply multiplying the
given values (12 * 15).

2.02 Programming Concepts
Visual Basic and other procedural languages make use of three basic programming
constructs. Combining these constructs provides the ability to create code that will follow a
logical process. Selection and Iteration off er a number of alternative approaches and are
covered in detail in Chapters 4 and 5.

Sequence
The order in which a process is completed is oft en crucial to the success of that process. Take
the mathematical expression A + B × C + D. The rules of precedence dictate that the multiply
operation will be completed first. Had the programmer intended that the operations A + B
and C + D be completed before multiplying the two result values then they would have had to
be explicit about the required sequence.

Sequence: Code is executed in the order it is written.

KEY TERM

Selection: Code branches and follows a diff erent sequence based on conditions being fulfilled.
Iteration: Code repeats a certain sequence a number of times depending on certain conditions.

KEY TERM

14

Cambridge IGCSE Programming Book

In programming the sequence is indicated by the order in which the code is written, usually
top to bottom. The program will execute the first line of code before moving to the second
and subsequent lines. An example of a sequence error would be completing a process before
all the appropriate user inputs had been obtained.

Selection
Often your programs will perform different processes dependent on user input. Consider a
system designed to provide access to the school network based on user input of a username
and password. The system would need to follow different paths dependent on whether the
user input was accurate or not. One path would allow network access if the username and
password matched records. If there was no match the system would follow another path in
which the user was prompted to re-input details.

Iteration
It is not unusual for a program to perform identical processes on different data items.
Consider a program which takes a series of coordinates and produces a line graph. The code
that provides the instructions that plot the new coordinates and draw a connecting line
from the previous coordinates will be repeated for each of the coordinates given. Iteration
provides a method that causes the execution of the code to jump to the beginning of the
‘plotting’ code sequence for each new set of coordinates.

2.03 Design Tools
When you design programs it is normal to plan the logic of the program before you start to
code the solution. This is an important step in the design of effective systems because a flaw
in the logic will often result in programs that run but produce unexpected outputs.

The first step in the design process is to break down the problem into smaller problems. This
is called ‘top-down design’. Once you have the smaller problems defined you can consider
each problem separately. This will be easier to plan and finally code. A structure diagram is
used to help organise the top-down design. Chapter 6 provides more detail about top-down
design and structure diagrams.

The next stage is to design an algorithm for the individual problems. Two approaches
that can be used at this stage to help generate logically accurate systems are flowcharts
and pseudocode.

To succeed in your course you will be expected to have a working understanding of
flowcharts and pseudocode and to be able to use them to answer questions that
require you to explain the logic of your solutions to given tasks. Both methods are used
throughout this book to indicate the logic of systems and it important that you become
familiar with their use.

SYLLABUS CHECK

Problem solving and design: Use flowcharts and pseudocode.

15

Chapter 2: Sequence

2.04 Flowcharts
Flowcharts are graphical representations of the logic of the intended system. They make use
of symbols to represent operations or processes which are joined by lines that indicate the
sequence of operations. Table 2.01 details the symbols used.

Table 2.01

Symbol Use Example

Terminator

The START or END of a system

START END

Input or output

A required INPUT from the system user or an
OUTPUT to the system user

The value being input or output is written on the
symbol.

INPUT
Number

OUTPUT
Result

Process

A process within the system

The flowchart should show sufficient detail
to indicate how the proposed process is to be
achieved. Beware of making the process too
generic.

For example if the system was required to
calculate an average value, a process entitled
‘Calculate Average’ would be too generic. It
needs to indicate the inputs or other values used
to calculate the average.

Result A * B Average
 (A+B+C+D)/4

Data flow line

Joins two operations

The arrowhead indicates the direction of the
flow.

Iteration (looping) can be indicated by a flow
returning to an earlier process in the flowchart.

INPUT
A, B

OUTPUT
ResultResult A * B

Decision

A point in the sequence where alternative paths
can be taken

The condition on which the flow is determined
is written within the symbol. Where multiple
alternatives exist, sequence flows are indicated
by chained decision symbols. Each ‘No’
condition directs to another decision in the
process.

Is Input
= C

Is Input
= B

YESNO

YESNO

Is Input
= A

YESNO

Number
above 10

NOYES

16

Cambridge IGCSE Programming Book

2.05 Pseudocode
Pseudocode is a method of describing the logic and sequence of a system. It uses keywords
and constructs similar to those used in programming languages but without the strict use
of syntax required by formal languages. It allows the logic of a system to be defined in a
language-independent format for a programmer to code using any programming language
which is appropriate to the context.

While the programming code required to perform processes can vary considerable across
differing languages, the same pseudocode line could be used to describe the logic of a
system intended to be written in any language.

Pseudocode follows a number of underlying principles:

Use capital letters for keywords close to those used in programming languages.

Use lowercase letters for natural language descriptions.

 Use indentation to show the start and end of code statements, primarily when using
selection and iteration.

One of the advantages of learning to program using Visual Basic is that the actual coding
language is structured in a similar way to natural language and therefore closely resembles
pseudocode. Visual Basic also automatically indents instructions where appropriate similar
to the approach that should be adopted when writing pseudocode.

2.06 Pseudocode Example
This pseudocode is for an algorithm that accepts the input of two numbers. These values
are added together and the result is stored in a memory area called Answer. The value in
Answer is then displayed to the user. (In Chapter 3 we will learn that this memory area is
known as a variable.)

Note the use of ← to show the passing of values. This is distinct from the use of the equals
symbol (=) which is used to indicate a comparison of two values. (Visual Basic does not have
the ← symbol and uses the = symbol in both situations.)

SYLLABUS CHECK

Pseudocode: understand and use pseudocode for assignment, using ← .
17

Chapter 2: Sequence

INPUT Number1
INPUT Number2
Answer ← Number1 + Number2
OUTPUT Answer

2.07 Effective use of Flowcharts and Pseudocode
Because of the universal nature of flowcharts and pseudocode they are used extensively in
the IGCSE Computer Science syllabus.

The aim of this book is to help you to learn to design effective systems using the
programming language Visual Basic. The following chapters make use of flowcharts
and pseudocode to define the logic of systems, before moving on to specific Visual Basic
coded solutions.

Learning how to detail the logic of programs through the use of these design techniques will
be a crucial step not only in your preparation for examination but also for your preparation
in using the languages of the future. Language syntax is likely to change in the future but the
need for effective logical and computational thinking will remain a constant.

Summary
● Programmers make use of three constructs when writing code:

● sequence: the logical order in which the code is executed

● selection: branching of code onto different paths based on certain conditions

● iteration: repeating of sections of code.

● Before coding a program it is crucial to design an appropriate algorithm.

● Flowcharts and pseudocode are tools used in the design of algorithms.
18

Cambridge IGCSE Programming Book

Chapter 3:
Variables and Arithmetic Operators
Learning objectives
By the end of this chapter you will understand:

■ how to declare and use variables and constants
■ and be able to use the data types Integer, Real, Char, String and Boolean
■ how to use basic mathematical operators to process input values
■ how to design and represent simple programs using flowcharts and pseudocode.

19

3.01 Variables and Constants
Programs are normally designed to accept input data and process that data to produce the
required output. Data used in programs can vary depending on the aim of the program; a
calculator will process numerical data while a program designed to check email addresses
will process textual data. When writing programs you will use variables or constants to refer
to these data values. A variable identifies data that can be changed during the execution
of a program while a constant is used for data values that remain fixed. The metadata you
provide about a variable or constant will be used by the computer to allocate a location in
memory in which the data will be stored.

3.02 Types of Data
In addition to giving the variable or constant an identifier (name) which is used as a label by
the computer to reference the allocated memory, it is also important to provide information
about the type of data so that the appropriate amount of memory can be reserved. For
example storing a large decimal number will require more memory bytes than storing a
single character.

To support this process diff erent data types exist. The basic data types you will need to use
are identified in Table 3.01.

Table 3.01

Data type Description and use Visual Basic

Integer Whole numbers, either positive or negative

Used with quantities such as the number of students at a
school – you cannot have half a student.

Can store values ranging from –2 147 483 648 to 2 147 483 647.

Uses 4 bytes of memory.

If a decimal value is put into an Integer variable, the value is
rounded to the nearest whole number.

Real Positive or negative fractional values

Used with numerical values that require decimal parts, such
as currency.

Real is the data type used by many programming languages
and is also referenced in the IGCSE Computing syllabus.

Visual Basic does not use the term Real, the equivalent data
type is called ‘Decimal’.

The range of values depends on the number of decimal
places required.

Uses 16 bytes of memory.

Stores a much larger range of numbers than the Integer data
type. Single and Double also hold fractional numbers.

Char A single character or symbol (for example, A, z, $, 6)

A Char variable that holds a digit, cannot be used in
calculations.

Stores a single Unicode character.

Uses 2 bytes of memory.

String More than one character (a string of characters)

Used to hold words, names or sentences.

Can store a maximum of approximately 2 billion Unicode
characters.

20

Cambridge IGCSE Programming Book

Variable: The identifier (name) given to a memory location used to store data; the value can be
changed during program execution.
Metadata: Data about data; information about the structure or format of the data stored.

KEY TERM

Data type Description and use Visual Basic

Boolean One of two values, either TRUE or FALSE

Used to indicate the result of a condition for example, in a
computer game a Boolean might be used to indicate if a
player has achieved a higher level.

You can find more information about the data types in Visual Basic at
http://msdn.microsoft.com/en-us/library/47zceaw7.aspx.

3.03 Pseudo Numbers
Telephone numbers and ISBN numbers both consist of digits but are not truly numbers.
They are only a collection of digits used to uniquely identify an item; sometimes they contain
spaces or start with a zero, and they are not intended to be used in calculations. These are
known as ‘pseudo numbers’ and it is normal to store them in a String data type. If you store
a mobile phone number, as an Integer any leading zeros will be removed and no spaces or
symbols will be permitted.

3.04 Declaring Variables and Constants
You will need to select an identifier (name) and a data type for your variables or constants.
In Visual Basic it is possible to declare variables without declaring a data type but it is
considered good practice to define the data type. This is known as ‘strong typing’; it allows
the compiler to check for data type mismatches and results in faster execution of the code.

When naming your variables or constants use identifiers that have a meaningful link with
the data being stored. For example if you are storing the high score of two players in a game
use the names Player1HighScore and Player2HighScore. Declaring variables with relevant
identifiers will help to make your code easier to read and maintain.

It is not possible in Visual Basic to have spaces in identifiers. For identifiers that incorporate
more than one word it is normal to start each new word with a capital letter. This is known
as CamelCase. Identifiers can include digits, for example Number1, but cannot begin with a
digit. Words that are used by Visual Basic are known as reserved words and cannot be used as
variable names. For example it is not possible to name a variable ‘Integer’ or ‘Boolean’.

It is important to select the most appropriate data type for your variables. Using
inappropriate data types may result in your programs returning unexpected results. For
example using the data type Integer to store currency values could result in the decimal
element being rounded and the wrong values being output.

It is also considered good practice to give variables an initial value when declaring them: this is
known as ‘initialising’. Uninitialised variables will hold the default values set by Visual Basic. Some
examinations may expect you to initialise variables so getting into the habit is a good idea.

SYLLABUS CHECK

Programming concepts: understand and use Integer, Real, Char, String and Boolean.

SYLLABUS CHECK

Programming concepts: declare and use variables and constants.

21

Chapter 3: Variables and Arithmetic Operators

3.05 Declaring Variables in Visual Basic
Declaration of variables is achieved by using the code format shown in Figure 3.01.

Dim Score As Integer = 0

the identifier of
the variable

initialising the variable
with a value

the keyword that
defines the declaration

the data type
of the variable

Figure 3.01 Declaring variables in Visual Basic

In the following declarations the variable identifier, data type and initial value are declared.

Dim PlayerName As String = ''''
Dim DrivingLicence As Boolean = False
Dim Payment As Decimal = 0

3.06 Declaring Constants in Visual Basic
The code for declaring constants follows a similar format to that used for variables, but uses
the keyword ‘Const’ to replace ‘Dim’.

Here is an example of declaring a constant:

Const Pi As Decimal = 3.14159

3.07 Variable Scope
When declaring a variable the placement of the declaration in the code will determine which
elements of the program are able to make use of the variable.

Global variables are those that can be accessed from any routine within the program. They
are used for variables that need to be accessed from many elements of your program. To
give a variable global status it must be declared outside of any specific subroutine. It is good
practice to make all the global declarations at the start of the code.

Local variables can only be accessed in the code element in which they are declared. They
are used when the use of the variables will be limited to a single routine. Using local variables
reduces the possibility of accidently changing variable values from other code elements.

Constant: A named memory location which contains data that can be read but not changed by
the program.

KEY TERM

22

Cambridge IGCSE Programming Book

Figure 3.02 shows the same code in a Console Application and in a Windows Forms
Application. There are two global variables (Score and PlayerName) and one local
variable (Result).

Public Class Form1

 Dim Score As Integer = 0
 Dim PlayerName As String = ""

 Private Sub Button1_Click(sender As Object, e As EventArgs)
 Handles Button1.Click

 Dim Result As Integer = 0

 End Sub
End Class

Module Module1

 Dim Score As Integer = 0
 Dim PlayerName As String = ""

 Sub Main()
 Dim Result As Integer = 0

 End Sub

End Module

Windows Form mode exampleConsole mode example

Figure 3.02 Declaring Global and Local Variables

3.08 Arithmetic Operators
There are a number of operations that can be performed on numerical data. Combining
these operations and appropriate variables allows you to create programs that are capable
of performing numerical computation tasks.

The basic operators used in Visual Basic are shown in Table 3.02.

Table 3.02

Operation Example of use Description

Addition Result = Number1 + Number2 Adds the values held in the variables Number1
and Number2 and stores the result in the
variable Result.

Subtraction Result = Number1 – Number2 Subtracts the value held in variable Number2 from the value in Variable
Number1 and stores the result in the variable Result.

Multiplication Result = Number1 * Number2 Multiplies the values held in variables Number1 and Number2 and
stores the result in the variable Result.

Division Result = Number1 / Number2 Divides the value in variable Number1 by the
value in Number2 and stores the result in the variable Result

TIP
As a division operation can result in a fractional value it would be normal to use a Decimal (or Real)
data type to hold the Result.

23

Chapter 3: Variables and Arithmetic Operators

3.09 Programming Tasks
Multiply Machine
The Multiply Machine takes two numbers input by the user, multiplies them together and
outputs the resultant value.

First you need to design the algorithm. Figure 3.03 shows flowchart and pseudocode
solutions for the task.

START

INT: Number1 00
INT: Number2 00

INT: Multi 0

INPUT
Number1
Number2

Multi
Number1*
Number2

OUTPUT
Multi

END

Number1 ← 0,
Number2 ← 0,
Multi ← 0

INPUT Number1, Number2
Multi ← Number1 * Number2
OUTPUT Multi

Figure 3.03 Pseudocode and flowchart for Multiplication algorithm

In Visual Basic assigning is indicated by the use of
the = symbol. In pseudocode the ← symbol is used.

SYLLABUS CHECK

Pseudocode: understand and use
pseudocode commands INPUT and OUTPUT.

TIP
Variables that have been declared with numerical data types such as Integer or Decimal can only accept numerical data.
If textual data is input the soft ware will cause an exception error:

A null input will also cause this error.

Note the use of the correct and recognised symbols in the
flowchart and pseudocode:

• indicates a process such as completing the

 multiplication.

• indicates either an INPUT or OUTPUT.

• ← indicates the assigning of a value; it is used when
initialising variables or passing new values to a
variable.

24

Cambridge IGCSE Programming Book

Here is the console mode program implementation of this solution:
Module Module1

 Sub Main()
 ‘Declaration and initialising of required local variables
 Dim Number1 As Integer = 0
 Dim Number2 As Integer = 0
 Dim Multi As Integer = 0

 ‘Display a request for the first number
 Console.WriteLine(“Please insert first number”)
 ‘Store the user input into the Number1 variable
 Number1 = Console.ReadLine()

 ‘Request and store second user input
 Console.WriteLine(“Please insert second number”)
 Number2 = Console.ReadLine()

 ‘Storing in the local variable the multiplication result
 Multi = Number1 * Number2

 Console.WriteLine(“The answer is”)
 ‘Displaying the value held in the variable Multi
 Console.WriteLine(Multi)

 ‘ReadKey used to pause the console window
 Console.ReadKey()
 End Sub

End Module

If you are using the Windows Forms application you will need to design an interface that is
capable of taking two values and displaying a result. It could look something like Figure 3.04.

TBNumber1 TBNumber2 BTNMultiply

Multiply

TBOutput

Figure 3.04 Windows Forms interface design

Remember to give the design elements of the form appropriate names. This example has
used the names shown in green on Figure 3.04.

25

Chapter 3: Variables and Arithmetic Operators

The code to achieve this solution should be run under the button click event.

Public Class Form1

 Private Sub BTNMultiply _ Click(sender As Object, e As EventArgs) Handles BTNMultiply.Click

 ‘Declaration and initialising of required local variables
 Dim Number1 As Integer = 0
 Dim Number2 As Integer = 0
 Dim Multi As Integer = 0

 ‘Storing the values input in the textboxes to the variables
 Number1 = TBNumber1.Text
 Number2 = TBNumber2.Text

 ‘Storing in the local variable the multiplication result
 Multi = Number1 * Number2

 ‘Displaying the value held in the variable Multi in the output text box
 TBOutput.Text = Multi

 End Sub

End Class

Volume of Water in Aquarium
Design a program where the inputs will be the height, width and depth of an aquarium. The
output should be the number of litres of water that the aquarium will hold (1 litre = 1000 cm3).

Multiply Machine Extension Task
Extend this program to include addition, subtraction and division buttons. It will have to
be programmed using a Windows Forms application.

Points for discussion:

1 Should all the variables be declared locally?
2 Is Integer an appropriate data type for all the resultant output variables?

EX
TE

NS
IO

N
TA

SK

26

Cambridge IGCSE Programming Book

REAL: Height ← 0, Width ← 0,
Depth ← 0, Volume ← 0
INT: Litres ← 1000

INPUT Height, Width, Depth

Volume ← (Height*Width*Depth)/Litres

OUTPUT Volume

START

REAL: Height 0
REAL: Width 0
REAL: Depth 0

REAL: Volume 0
INT: Litres 1000

Volume (Height*
Width * Depth)/LitresWidth * Depth)/Litres

INPUT
Height,

Width, Depth

OUTPUT
Volume

END

Figure 3.05 Flowchart and pseudocode for the aquarium algorithm

The following code shows the console mode program implementing this solution. Note how
the logical sequence of the code follows the flowchart or pseudocode design.

Module Module1

 ‘Global variables to hold the inputs
 ‘Note the addition of the 1 to the names to overcome the reserved word conflict
 Dim Height1 As Decimal = 0
 Dim Width1 As Decimal = 0
 Dim Depth1 As Decimal = 0
 ‘Constant to hold the ratio of cubic centimetres to litres
 Const Litres As Integer = 1000

 Sub Main()
 ‘Local variable to hold the resultant volume
 Dim Volume As Decimal = 0

 ‘Request and store user inputs
 Console.WriteLine(“Please insert Height and press Return”)
 Height1 = Console.ReadLine
 Console.WriteLine(“Please insert Width and press Return”)
 Width1 = Console.ReadLine
 Console.WriteLine(“Please insert Depth and press Return”)
 Depth1 = Console.ReadLine

27

Chapter 3: Variables and Arithmetic Operators

 ‘Calculate Volume and store in local variable
 Volume = Height1 * Width1 * Depth1
 ‘Convert the value in volume current in cubic centimetres to litres
 Volume = Volume / Litres

 ‘Display the value held in the variable Volume
 Console.WriteLine(“The volume is”)
 Console.WriteLine(Volume)

 Console.ReadKey()
 End Sub
End Module

Using the Windows Form application the interface could look something like Figure 3.06.

Figure 3.06 Interface design for Windows Forms Aquarium algorithm

Remember to give the design elements of the form appropriate names. Figure 3.06 shows the
names in green.

The Windows Form application code to achieve this solution should be run under the button
click event:

28

Cambridge IGCSE Programming Book

Public Class Form1

 ‘Global variables to hold the inputs
 ‘Note the addition of the 1 to the names to overcome the restricted word conflict
 Dim Height1 As Decimal = 0
 Dim Width1 As Decimal = 0
 Dim Depth1 As Decimal = 0
 ‘Constant to hold the ratio of cubic centimetres to litres
 Const Litres As Integer = 1000

 Private Sub BTNVolume _ Click(sender As Object, e As EventArgs) Handles BTNVolume.Click

 ‘Local variable to hold the resultant volume
 Dim Volume As Decimal = 0

 ‘placing values from the textbox into variables.
 Height1 = TBHeight.Text
 Width1 = TBWidth.Text
 Depth1 = TBDepth.Text

 ‘Calculate Volume and store in local variable
 Volume = Height1 * Width1 * Depth1
 ‘Convert the value in volume current in cubic centimetres to litres
 Volume = Volume / Litres

 ‘Output the value in local variable to the textbox
 TBVolume.Text = Volume

 ‘The volume calculation could have been achieved in one calculation
 ‘Volume = (Height1 * Width1 * Depth1)/Litres

 End Sub
End Class

3.10 Development Challenges
Challenge yourself, or your colleagues, to complete a programming task. The following are
some examples of the type of task you might like to consider. The last two are complex
mathematical challenges.

For each challenge, you should draw a flowchart and create a pseudocode algorithm before
programming and running the code in Visual Basic.

Area and Circumference of a Circle
A system takes the radius of a circle as its input and calculates the area of the circle and the
circumference.

1 Draw a flowchart and create a pseudocode algorithm that will output the area of the circle
and the circumference based on the input radius.

2 Test that your algorithm works by programming and running the code in Visual Basic.

TA
SK

29

Chapter 3: Variables and Arithmetic Operators

	computer-prog-book-cover
	637*799
	computer programming book

